Optimization of a Y-graft design for improved hepatic flow distribution in the fontan circulation.
نویسندگان
چکیده
Single ventricle heart defects are among the most serious congenital heart diseases, and are uniformly fatal if left untreated. Typically, a three-staged surgical course, consisting of the Norwood, Glenn, and Fontan surgeries is performed, after which the superior vena cava (SVC) and inferior vena cava (IVC) are directly connected to the pulmonary arteries (PA). In an attempt to improve hemodynamic performance and hepatic flow distribution (HFD) of Fontan patients, a novel Y-shaped graft has recently been proposed to replace the traditional tube-shaped extracardiac grafts. Previous studies have demonstrated that the Y-graft is a promising design with the potential to reduce energy loss and improve HFD. However these studies also found suboptimal Y-graft performance in some patient models. The goal of this work is to determine whether performance can be improved in these models through further design optimization. Geometric and hemodynamic factors that influence the HFD have not been sufficiently investigated in previous work, particularly for the Y-graft. In this work, we couple Lagrangian particle tracking to an optimal design framework to study the effects of boundary conditions and geometry on HFD. Specifically, we investigate the potential of using a Y-graft design with unequal branch diameters to improve hepatic distribution under a highly uneven RPA/LPA flow split. As expected, the resulting optimal Y-graft geometry largely depends on the pulmonary flow split for a particular patient. The unequal branch design is demonstrated to be unnecessary under most conditions, as it is possible to achieve the same or better performance with equal-sized branches. Two patient-specific examples show that optimization-derived Y-grafts effectively improve the HFD, compared to initial nonoptimized designs using equal branch diameters. An instance of constrained optimization shows that energy efficiency slightly increases with increasing branch size for the Y-graft, but that a smaller branch size is preferred when a proximal anastomosis is needed to achieve optimal HFD.
منابع مشابه
The Etiology of Neonatal Hyperbilirubinemia
Etiology of Physiologic Neonatal Hyperbilirubinemia. Every newborn infant develop·s hyperbilirubinemia during the first week of life which is called "physiologic". There are several factors responsible for the development of physiologic hyperbilirubinemia, as follows: 1. Increased bilirubin production, due to a - Increased blood volume. b - Decreased R.B.C. survival time. c - Increased in...
متن کاملFontan Revision with Y-Graft in a Patient with Unilateral Pulmonary Arteriovenous Malformation
The extracardiac conduit Fontan procedure is the last surgical step in the treatment of patients with a functional single ventricle. An acquired pulmonary arteriovenous malformation may appear perioperatively or postoperatively due to an uneven hepatic flow distribution. Here we report a case of a bifurcated Y-graft Fontan operation in a 15-year-old male patient with a unilateral pulmonary arte...
متن کاملEvaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics.
OBJECTIVES The objective of this work is to evaluate the hemodynamic performance of a new Y-graft modification of the extracardiac conduit Fontan operation. The performance of the Y-graft design is compared to two designs used in current practice: a t-junction connection of the venae cavae and an offset between the inferior and superior venae cavae. METHODS The proposed design replaces the cu...
متن کاملPulsatile venous waveform quality affects the conduit performance in functional and "failing" Fontan circulations.
OBJECTIVE To investigate the effect of pulsatility of venous flow waveform in the inferior and superior caval vessels on the performance of functional and "failing" Fontan patients based on two primary performance measures - the conduit power loss and the distribution of inferior caval flow (hepatic factors) to the lungs. METHODS Doppler angiography flows were acquired from two typical extra-...
متن کاملHaemodynamic comparison of a novel flow-divider Optiflo geometry and a traditional total cavopulmonary connection.
OBJECTIVES The total cavopulmonary connection (TCPC), the current palliation of choice for single-ventricle heart defects, is typically created with a single cylindrical tunnel or conduit routing inferior vena caval (IVC) flow to the pulmonary arteries. Previous studies have shown the haemodynamic efficiency of the TCPC to be sub-optimal due to the collision of vena caval flow, thus placing an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanical engineering
دوره 135 1 شماره
صفحات -
تاریخ انتشار 2013